首页 > 检测新闻

阴极极化对硫酸盐还原菌腐蚀影响的研究进展(4)

来源:中国科学院海洋研究所,青岛海洋科学与技术国家实验室  发布日期:2019-05-31

3.3.2 阴极极化促进 SRB 代谢 SRB 代谢活性与阴极极化电位密切相关,随着阴极极化电位的负移,SRB的数目呈现先增加后减小的趋势,FeS的含量变化趋势与 SRB 细菌数目一致。强阴极极化电位下SRB数目的减少与其界面pH值的升高密切相关,而弱阴极极化下SRB数目增加说明弱阴极极化电位促进了SRB的代谢活性。赵晓栋等研究了含有 SRB 的海泥中阴极极化电位对碳钢腐蚀的影响,通过最大概率计数法结合不同阴极极化电位下的 Bode 图得出,在低电位(-0.85 VCSE) 下细菌的生长活性与稳定性高于在较高阴极极化电位 (-0.95 和-1.05 VCSE) 下的,且高于无施加阴极极化电位下的细菌数目。对硫还原地杆菌 (Geobactersulfurreducens) 的研究表明,生物膜形态和结构对金属表面的电流密度具有重要影响,离散的、稀疏的菌膜产生的电流密度高于致密的菌膜。因此不同阴极极化电位下,细菌生物膜形态和结构的改变及活性的变化都会对金属的腐蚀产生一定的影响。SRB 作为一种电活性微生物,其与极化金属间电子传递方式可分为直接电子传递 (DET) 和间接电子传递 (MET)。图3显示了SRB在与极化电极之间的DET和MET方式。

 

10.png

 

(1) 间接电子传递Fe 失去的电子须借助电子传递介质才能传递到SRB中。在微生物燃料电池中,电子传递介质的使用可以增加细菌的产电能力。电子传递介质从阴极极化的电极中获得电子,通过电子传递通道,将电子传递到SRB中。H可以作为SRB与极化电极之间间接电子传递的介质。施加阴极极化后,H+向电极表面移动并在电极表面上还原成[H];而[H]在SRB中氢化酶的催化下还原SO42-并为SRB的代谢提供能量,从而促进SRB的生长代谢。同时,在此过程溶液的pH值升高。研究表明,Desulfitobacterium 可以通过在极化-0.7 VSHE电极上进行H的活化。产电微生物Geobacter sulfurreducens可以利用极化电极上H的氧化还原进行产电,其反应如下:

 

9.png

 

核黄素、奎宁胡敏酸、吩嗪和黄素腺嘌呤二核苷酸 (FAD) 等是常见的内生电子传递介质。SRB 可以利用维生素B12等与极化的电极进行间接的电子传递。在SRB介质中,铁硫化物也可以作为SRB的电子传递通道。在这个过程中,硫酸铁 (Fe2(SO4)3)可以作为 SRB 的电子传递受体,从而将铁的腐蚀产物转化为碳酸铁 (Fe2(CO3)3)、蓝铁矿 (Fe3(PO4)2·(H2O)8)、硫化铁 (Fe2S3) 等,同时促进 SRB 的代谢活性,如图4所示。

 

11.png

 

(2) 直接电子传递直接电子传递为SRB利用细胞色素c等电子传递蛋白或者自身形成的纳米线与电极直接进行电子传递。Sherar 等和Xu等的研究表明,在碳源不足的条件下,SRB会形成纳米线从金属基体中直接获得电子。

 

除此之外,在共生的细菌中,非产电细菌亦可为产电细菌提供电子通道。Wegener等证明甲烷氧化细菌 (ANME-1) 与 SRB (HotSeep-1) 之间可以通过形成纳米线进行电子传递,图5中箭头明确指出了电子传递的纳米线。

 

12.png

 

阴极极化电位影响SRB的电子传递方式,并影响着 SRB 的代谢活性。在合适的阴极极化电位下(如-0.4 VSCE或-0.7 VHSE等),SRB 可以从极化的电极中直接或间接获得电子用于自身的代谢,即较低的阴极极化可以促进SRB的代谢,而强阴极极化电位则会抑制SRB的代谢和生长。极化作用所在电极表面产生的强碱性环境,并不利于细菌附着,这反而抑制了SRB的活性;此外,已有研究证明,金属表面形成的FeS等腐蚀产物也为SRB从溶液铁金属中直接获得电子提供了通道 (图6)。

 

13.png

 

Nekoksa等研究认为,-1 VSCE的阴极极化使金属表面pH值降低,金属表面SRB数目增多。当电位低于-1 VSCE时,pH值逐渐呈现碱性,SRB数目降低。利用电化学测试和生物分析方法探究阴极极化下的微生物活动结果表明,-0.9 VAg/AgCl的阴极极化可以在短期内为海洋金属设施提供保护;但是当极化终止后,厌氧SRB将通过消耗阴极极化过程中产生的H来促进自身的生长代谢,从而加速金属的腐蚀。

 

4 问题与展望

 

近几十年来,微生物腐蚀已经成为国内外腐蚀与防护研究的重点,人们在研究阴极极化与微生物间的相互作用方面也取得了很大的进步。但要全面深入地认识微生物腐蚀与腐蚀防护技术 (如阴极保护) 的相互作用,仍有诸多问题需要解决。如近些年的研究表明,生物膜内细菌群落组成的差异和细菌代谢活动产生的差异对微生物腐蚀具有重要影响,然而在评估生物膜对金属腐蚀的影响时很少考虑到SRB的代谢特异性。2004年,Dinh等在只有Fe为电子受体的培养基中分离出脱硫弧菌属 (Desulfobacterium) 的一个新种,相较于传统的耗氢型菌株,该菌株还原硫酸盐的速度更快,作者推测此类菌株能够从金属中直接获得电子。Venzlaff等从实验验证了以上推测。Yu等从铁锈中分离纯化了Desulfovibrio caledoniensis,并证实其能够从-0.74 VSHE的极化电极中获得电子,即利用阴极作为电子供体,这种直接电子传递的通路在生物代谢和加速金属腐蚀中有重要作用。其他的一些研究也表明,同一个属的不同菌株对金属腐蚀行为存在很大的不同。因此,在将来有关微生物腐蚀的研究中,加强物种多样性的调查是非常必要的。对于那些能够直接从金属中获得电子的SRB菌株,有关其腐蚀过程中电子传递机理方面的研究甚少。利用分子生物学、光谱电化学及微区腐蚀观察等技术手段研究 SRB 菌株的直接电子传递途径及其呼吸代谢机制,对未来微生物腐蚀研究探索有重要意义。

 

 

注:版权归作者享有。作品、图片如有作者来源标记有误或涉及侵权,请原创作者联系小编删除。