钛合金因具有重量轻、比强度高、耐蚀性好等优良特性,已广泛应用于航空航天、船舶、机械、化工等领域。但是其表面硬度低,耐磨性差,耐腐蚀性不理想,使钛合金在许多情况下难以满足实际应用的要求,严重阻碍了钛合金的进一步应用。目前,提高钛合金耐磨性的表面处理技术主要有离子注入、化学镀、激光熔覆、等离子喷涂、气相沉积和微弧氧化等。每一种单一表面技术都有其一定的局限性。近年来,采用复合处理技术,对钛合金表面改性,使得其性能逐步提高,解决了钛合金表面强化问题。因此,本文针对目前几种钛合金表面单一及复合强化处理方法进行阐述。
1 钛合金耐磨表面改性和涂层技术
1.1 离子注入
离子注入技术起始于20世纪60年代,该技术通过在真空、低温下将高能带电离子快速射入到金属近表层,使离子与基体发生一系列复杂反应,进而形成新的表面改性合金层,新形成的合金层与基体结合力强,耐磨效果提高显着。该工艺的突出优点在于既能保持金属基体自身性能、不改变材料宏观尺寸、环保无公害,又可以大幅度地改善材料表面的耐腐蚀性和抗氧化性等。离子源既可是非金属离子,如 B,C,N 等,又可是 Zr,Mo,Re 等金属离子。就非金属离子注入而言,当将B,C,O等注入钛合金表面后,会形成相应的硬质化合物 (TiB,TiC,TiO),使得材料表层硬度和耐磨性得以提高。罗勇等将N3-注入Ti6Al4V基体表面以提高材料力学性能,生成的 TiN 薄膜使得钛合金表面的显微硬度明显提高,其平均硬度提高了约25%,耐磨性为钛合金基体的2.5倍。
1.2 化学镀
化学镀也被称为无电解镀或自催化镀,即在没有外加电流的前提下,利用金属的自催化作用,同时借助镀液中的还原剂,将游离的金属离子还原成金属,并均匀沉积到待镀零件表层的一种表面镀覆技术。目前,针对钛合金耐磨改性方面,化学镀已由最初的单一化学镀Ni逐步发展到多种金属与合金及复合化学镀的表面处理工艺,如化学镀 Cu、Ag、Au及Sn等。复合化学镀是基于原有镀液基础上加入如Al2O3,Cr2O3,SiC等固体硬质颗粒,使其在外力下与金属发生共沉积,从而获得比不加微粒的镀层更好的力学性能。
Zangeneh-Madar等尝试用化学镀技术在钛合金表面制作 Ni-P-聚四氟乙烯(PTFE) 复合涂层,并研究了镀液浓度、温度和表面活性剂浓度对镀层形成产生的影响,同时也探究了样品的摩擦磨损特性。结果表明,Ni-P 和 PTFE 的共沉积可以明显降低镀层的摩擦系数,减少磨损量,提高润滑性能。
相对于电镀,化学镀镀层具有均匀致密、无需外加电流供应、操作过程简单、可在塑料等非导体上沉积镀层等优点,且化学镀污染小、成本低。目前,化学镀由于可制备具有良好抗蚀、耐磨的膜层,在航空航天、汽车、机械、化工等领域都得到广泛应用。
1.3 激光熔覆
激光熔覆技术是一种将激光技术与金属热处理技术相结合的表面改性技术。该技术通过预先在基体表面喷涂或粘接粉末材料,或将粉末与激光束同步输送,然后用高能量密度激光束照射材料表面,使得粉末材料熔化,在基体金属上形成良好的冶金结合层。由于激光熔覆时,基材熔化部分很少,对基体性能基本没有影响。目前,已经采用的可改善钛合金耐磨的熔覆材料并不多,常用的有硬质陶瓷(SiC,TiC,Al2O3,TiN 和 TiB2等)、镍基自熔合金和陶瓷/合金几类,其中单一硬质陶瓷激光熔覆层由于脆性大,与钛合金热膨胀系数不匹配,产生很高的残余应力,易导致熔覆层产生裂纹甚至脱落。所以常用陶瓷/合金来改善钛合金的耐磨性,其中合金多用自熔NiCrBSi合金。
Weng 等在 TC4 钛合金表面激光熔覆不同含量的 SiC,在整个处理过程中,SiC 与基体反应生成Si5Si3和TiC,该反应物的生成显着提高了基体钛合金的硬度和耐磨性。实验结果表明,钛合金激光熔覆SiC后的涂层硬度达到1200 HV,是基体硬度的3倍多,涂层耐磨性能也提高了 18.4~57.4 倍;且随着SiC添加含量的增加 (低于20% (质量分数)),涂层硬度逐步提高到 1300~1600 HV,耐磨性能也进一步提高。
1.4 热喷涂
热喷涂是使用某种热源对喷料加热,待喷涂材料呈现可流动状态后被焰流加速,再喷溅到经前处理过的基体表面上,沉积得到具有特定功能涂层的加工方法。钛合金耐磨改性常用的喷料一般为非金属材料镍包石墨,单质金属材料Al、Ni及合金材料TiN,NiCrAl,MCrAlY 等。热喷涂处理后,涂层与基体界面处平直,结合较好,并在随后的高温氧化过程中,喷涂材料与基体发生相互扩散,形成冶金结合的扩散层,使耐磨性能大大提高。Huang等曾介绍,在钛合金表面进行热喷涂铝涂层,可在基体表面沉积一层保护层,但该保护层在低温下坚硬且具有脆性,由于热膨胀系数的不匹配性,易发生剥落。
1.5 物理气相沉积
物理气相沉积技术是在真空条件下,采用物理方法,将材料源-固体或液体表面气化成气态原子、分子或部分电离成离子,并输运至基体表面形成固相薄膜的技术。物理气相沉积技术主要包括蒸发、溅射和离子镀等,既可制备金属膜,也可制备化合物膜。
溅射和离子镀是两种常见的物理气相沉积技术,各具优势。离子镀具有韧性好、离子能量高、结合强度大等优点,然而制备的薄膜容易含有熔滴等缺陷。溅射的优点包括:操作温度低、膜层成分可控、材料变形较小、可镀靶材选择范围广等;但是膜层沉积速率较慢。奚运涛等采用磁控溅射和离子镀的方法在TC4钛合金表面制备了TiN膜,比较其摩擦磨损性能。结果表明,多弧离子镀和磁控溅射TiN膜层均提高了TC4钛合金表面的耐磨性能,多弧离子镀方法得到的膜层性能更好。
综上所述,单一钛合金表面耐磨改性技术虽可显着提高钛合金的显微硬度和耐磨性能,但是一些缺点不可避免,例如离子注入技术注入层的厚度过浅,仅在微米级别范围内,使用受限,同时试样尺寸也有一定的限制。化学镀层与基体结合强度不高,镀层薄,易产生氢脆。激光熔覆技术工艺参数控制较繁琐,且熔覆层中容易产生裂纹和气孔。热喷涂技术不适合处理不耐高温基体,且喷得的涂层结合力低、孔隙率大、均匀性差等。以下介绍的一些复合技术,可以对上述缺陷进行进一步的完善。
文章内容来自网络,如有侵权请联系管理员